
ANL/CPS-20/2

Enhanced Visualization Capabilities in
OpenMC: Report of Activities under a
DOE GAIN Voucher

Computational Science Division



About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne and
its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY
Online Access: U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available free at OSTI.GOV
(http://www.osti.gov/), a service of the U.S. Dept. of Energy’s Office of Scientific and
Technical Information

Reports not in digital format may be purchased by the public from the

National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703)
605-6000 Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the

Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document
authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne
National Laboratory, or UChicago Argonne, LLC.



ANL/CPS-20/2

Enhanced Visualization Capabilities in
OpenMC: Report of Activities under a
DOE GAIN Voucher

prepared by
Patrick C. Shriwise and Paul K. Romano

Computational Science Division

September 22, 2020



1 Project Summary

This work was performed under a Cooperative Research and Development Agreement (CRADA)
through the U.S. Department of Energy’s Gateway for Accelerated Innovations in Nuclear (GAIN)
program in partnership with Oklo Inc., the industry participant. The broad goal of this project
was to improve the visualization capabilities of OpenMC related to model development and
simulation results. OpenMC [?] is a Monte Carlo particle transport code that is developed and
maintained by a broad community of contributors, of which Argonne National Laboratory plays
a leading role.

2 Objectives and Requirements

The aim of this project was to create a stand-alone plotting application for OpenMC to aid in
model development and post-simulation visualization of the spatial distribution of tally results.
Specific requirements of the application were agreed upon at the beginning of the project in a
meeting with Oklo staff. These requirements included the following:

• In-memory image generation

The OpenMC executable can generate images of OpenMC models when run in
“plotting mode” using plot parameters that are specified in an XML file format.
In this mode, image files are written to disk in the PPM format. Images will be
generated using calls to the OpenMC shared library so that image generation can
occur without repeatedly invoking the OpenMC executable.

• Interactive plot image generation

Updates to the displayed image in the application will be “live,” enabling the user to
explore the model with little to no delay between views.

• Model visualization

Various model properties will be targeted for visualization during model preparation
and verification. Users will be able to select images colored by cell IDs and material
assignments as well as views of the temperature and density properties of these
domains.

• Data visualization

Data generated in OpenMC simulations is to be viewable in the application. OpenMC
tally information will be viewable simultaneously with the model’s geometric infor-
mation. Visible tally information will be selectable by tally filter bin, nuclide, and
score.

• Output data formats

The application will be able to export to a variety of standard 2D image formats
for use in sharing model information as well as figure generation for publication.
Support for data export of both model information and tally data to 3D formats will
be explored.

1



3 Work Performed

The following subsections describe work performed under the CRADA to develop an application
for visualization that meets the above requirements.

3.1 In-memory Image Generation

An initial version of the plotting application written in Python 3 was developed that called
the OpenMC executable in geometry plotting mode to write an image to disk that would then
be read and displayed in the utility. After this initial demonstration was complete, changes
were made so that the application could call functions from the OpenMC shared library in the
same process without performing any disk I/O. To achieve this capability required expanding
OpenMC’s C/C++ API. The capability to generate two-dimensional data maps of cell and
material IDs was exposed through OpenMC’s C/C++ API, which is accessible to the plotting
application by using Python bindings to the C/C++ API. These ID maps are used to create images
in the plotter, colored by the property and ID at each location. This method for in-memory
image generation greatly increased the interactive capability of the application by removing the
need for initialization of the model and writing/reading the image from disk for each image
displayed. Next, the ability to generate in-memory arrays of density and temperature was
added to OpenMC and exposed through the C/C++ API in a similar manner. Support was
then included for plotting of density and temperature with customizable colormaps, data limits,
and transparency. Additionally, several plotting performance improvements were added in
OpenMC, allowing for increased image resolution without loss of interactivity in the application.
To complete in-memory generation of model images, the ability to evaluate surface, cell, and
universe bounding boxes was added to OpenMC’s C/C++ API; these bounding boxes are used
to determine model bounds and generate default views in the application. With these changes,
the application can generate images completely based on an in-memory instance of OpenMC.

3.2 Interactive Image Generation

The use of an existing OpenMC instance and the C/C++ API to generate model images greatly
reduces the time needed to generate images in the application, providing a better user experience.
Without the need to reinitialize OpenMC, generation of the cell/material ID maps and density
or temperature maps can begin as soon as a new view of the model is requested. This capability
is particularly important for visualizing densities because generating a density map requires the
simulation cross sections to be loaded during initialization, which would have made the time
necessary to generate these images prohibitive in the application’s original design.

While adding density and temperature visualization using the C/C++ API, the underlying
code for plotting in OpenMC was also refactored by generalizing the generation of material/cell
IDs and densities/temperatures to improve performance of image generation by 2–3×. This
improvement enables interactive image generation at a higher resolution, providing a better user
experience, and also applies to image generation performed by using the OpenMC executable
run in plotting mode. The application also fully leverages OpenMC’s shared-memory parallelism
through OpenMP, giving users a means for further reducing the time needed to generate images

2



for publication figures or presentations. Control of image resolution provides control over the
speed of image generation as well.

Figure 1: The plotting application and geometry dock (left side) displaying a cell-based image
of a reactor assembly model.

3.3 Cells and Materials

OpenMC model views can be generated along any principal axis for either cell or material
domains. A view’s extents are specified by using an origin, width, and height in centimeters.
These values are set by default when loading the application using the bounding box of the
model’s root universe. As shown in ??, domain IDs, along with their density and temperature
values, are displayed in the status bar and updated as the pointer moves and hovers over
different domains. The coordinate values of the pointer’s current location in centimeters are
also displayed in the status bar in a live manner. Rather than updating the view, a user can
adjust the zoom setting and pan to the area of interest if desired.

The color of each domain in the view is randomly generated initially, but each color can be
customized either by using a context menu (shown in ??) or in a color customization dialogue
containing a color table for all cells/materials displayed.. The background color of the displayed
image can also be customized if the view goes outside the model’s bounds. Domains can also
be added to a highlight and mask group, each with its own customizable color. These options,
and others, are directly available via a context menu accessed by right-clicking on the domain
of interest in the current image.

3



Figure 2: The plotter context menu accessed for a material in the reactor assembly model.

3.4 Model Properties

The refactor of OpenMC’s plotting capability allows for image generation of density and tem-
perature for given domains. OpenMC associates temperatures primarily with cells and density
primarily with materials. These properties can be viewed by using a variety of different col-
ormaps with customizable minimum and maximum values and linear or logarithmic scaling.
The input temperature of different materials or cells is often a small set of fixed values, resulting
in little additional information when viewing temperatures as opposed to materials. However,
?? shows a temperature plot of a pincell model from a multiphysics calculation using OpenMC,
where distributed cell temperatures may vary independently. The plotting application provides
a fast method for viewing and verifying model properties of these types of results.

4



Figure 3: Temperature plot of a pincell model from a multiphysics calculation using OpenMC.

3.5 Geometry Errors

The ability to identify geometry overlaps was added to OpenMC’s plotting capability. This
check performs a point containment test for each pixel location on all cells in the model rather
than stopping at the first cell found to contain that point. Locations found to be in more
than one cell are classified as locations in an overlapping region and can be identified with a
customizable color as well as an identifier in the application status bar. The model in ?? contains
an overlapping region, shown in red. This feature is intended as a way for users to search for
errors in their geometry. This feature is currently optional because it is time consuming to
perform the additional point containment tests necessary to display this information.

3.6 Tally Data: Spatial Filters, Bins, Scores, and Nuclides

OpenMC’s simulation results are written in an application-specific HDF5 format as statepoint
files. These files can be loaded into the plotting application to view tally results containing
spatial filters (cell, material, universe, or mesh filters). Since the filters for a tally have already
been applied during the simulation, they cannot be added or removed from the tally data
when loaded into the plotting application. The bins of these tallies, however, can be selected
or unselected to view a subset of the data for each filter. Similarly, subsets of tally scores
and nuclides can be selected in the application provided that their units can be combined
meaningfully. Menus for selection of bins, scores, nuclides, and the visible tally value are all
automatically populated based on the current tally selected. A distinction is made between
tallies using a mesh filter and those without during tally image generation. Mesh filter bins
represent each voxel of the mesh and are enabled by default when viewing a tally with a
mesh filter. Other spatial filter bins can still be enabled/disabled when a mesh tally is present,

5



Figure 4: Display of an overlapping region in a pincell model (note the indicator in the status
bar).

allowing the user to overlay mesh tally data on a specific domain in the view. ?? shows a tally
with both mesh and cell filters applied. By selecting only the bins of cells one and three (the
innermost and outermost regions of the pincell), the data corresponding to the middle ring, cell
two, is removed from the image. The value of the currently displayed tally based on pointer
location is also displayed in the application status bar, providing an exact value of the tally at a
location of interest.

Tally data is currently managed through OpenMC’s Python interface, separating it from the
OpenMC instance connected to the application’s geometry data. As such, statepoint files can
be opened and closed in the same session to view results from several different simulations if
desired. The statepoint data is expected to match the in-memory model initialized when the
application is started.

3.7 Geometry Overlay

Tally data is displayed on top of the geometric data, which can make it difficult to distinguish
the two datasets from each other, particularly when viewing cell- or material-based tallies.
To mitigate this problem, options have been added to remove the geometry colors from the
canvas and enable outlines of geometry domains on the plot. These enable the user to display
information with an understanding of the effect of domains on the tally data. Model domains
can be masked as well if parts of the view overlap with the tally data. Domain information is
still provided in the application status bar based on the pointer’s location to assist with the user’s
orientation in the model and to indicate what combination of spatial tally bins will provide the
desired image in an area of interest.

Additionally, tally data can be viewed by using isometric contours rather than colormaps,

6



Figure 5: Image of mesh tally data for a pincell model with domain boundaries turned on. The
tally values shown represent the absorption score only in cells one and three. The values in cell
two are masked out by disabling the appropriate bin in the cell filter of the tally.

Figure 6: Contour plot of a mesh tally with the geometry displayed beneath.

as seen in ??. The contour plot provides the user with an alternative method to interpret tally
value gradients with respect to the geometric boundaries of the model while maintaining the
colors of domain regions for visual context and orientation.

7



3.8 2D Image Formats

The plotting application leverages the Matplotlib Python library to display colormaps and
contours representing geometric domains and tally data. With the use of this library, the
application can export images in any format supported by the Matplotlib installation (.jpeg,
.tiff, .png, .pdf, and others).

4 Additional Features

In addition to the capabilities described in ?? that meet the original requirements, several
features were added to the plotting application that will further enhance the user experience.
The following subsections briefly describe these features.

4.1 Undo/Redo

The application supports traversal of previous views with an “undo” capability. The user can
also move forward through views with a “redo” capability. Together, the undo/redo capability
enables users to return to a preferred view without having to memorize the specific settings of
that view, which can be cumbersome to track if multiple settings have been altered between
views.

4.2 Saved Views and Settings

Views can be saved from the application and loaded later by the user. Since the undo history in
the application is limited, the ability to save views provides a way for users to recover specific
views during a longer session. It also provides a way to share views with others. By providing
model inputs and a saved view, another user can expect the same settings and image to be
displayed. Each time the application is closed, the current plot settings are saved in a binary
format to be reloaded the next time the application is opened for that model. This way, previous
work like custom coloring of cells/materials is not lost between sessions.

4.3 Model Reloading

One of the purposes of the plotting application is geometry debugging. To facilitate this, the
application allows the user to reload a model during a session so that changes to the input XML
files can be viewed without restarting the application. This capability provides instant feedback
for changes to the input XML files and is particularly useful when used side by side with a text
editor during model preparation.

4.4 CAD-Based Geometry Visualization

OpenMC supports CAD-based geometry via the DAGMC toolkit [?], a software library from the
Computational Nuclear Engineering Research Group at the University of Wisconsin–Madison.
DAGMC enables particle tracking on tessellated CAD surfaces composed of triangles. OpenMC’s

8



geometric operations, including the point containment test used to produce images, are agnostic
to whether the domain entities are formed by OpenMC’s native Constructive Solid Geometry
(CSG) representations or on DAGMC’s tessellated CAD surfaces. As a result, the plotter works
on an OpenMC model setup for a DAGMC geometry without modification, although image
generation may take significantly longer. For example, the image in ?? was generated by using
a DAGMC file with no modification to the plotting application’s code.

Figure 7: An image generated by using a CAD-based model of the Advanced Test Reactor, a
difficult geometry to represent using CSG.

5 Application Roadmap

Given the usefulness of the plotting application developed under this CRADA to the wider
OpenMC community, there is interest in continued support and development through other
programs. In this section, we identify several areas that warrant further development.

5.1 Overlap Checking

Currently, overlaps are shown solely in the displayed view, which is useful only when the user
has some idea of where the overlaps occur. A feature is planned that will search the model
for overlaps. The user will be able to provide a resolution in all three dimensions over which
the search is to occur. 2D maps of the domain will be generated at each level of this grid. If
overlaps are found, the tool will halt and display that view on screen with overlap coloring
enabled. If no overlaps are found, the tool will report this fact when the search is complete.

9



5.2 Documentation

Online, searchable documentation is to be provided for the application in the near future. This
will include the plotter’s data model, menu descriptions, features, shortcut listings, suggested
workflows, and examples. Upon completion of comprehensive documentation, the application
will be considered for incorporation into the main OpenMC GitHub repository to be shipped
with the standard codebase.

5.3 3D Visualization

The intent for the plotting application is to enable 3D visualization by providing tools for
exporting geometry and tally data to commonly supported formats for visualization in tools
such as VisIt or Paraview. The OpenMC executable’s “plotting mode” currently can produce an
HDF5 voxel file containing a 3D Cartesian mesh where each mesh voxel is labeled by the cell
ID, material ID, temperature, and/or density based on the point at the center of that voxel. A
script is also provided with OpenMC that can translate these HDF5 files into the VTK format. In
the short term, this method will continue to be used for generating 3D data of model properties.
For tally data, a feature is in progress in the plotting application that will enable generation of
3D VTK files based on the current data selection for a tally. For tallies with mesh filters, the
resulting VTK grid will match the mesh in the mesh filter. For tallies with other spatial filters,
the user will be able to specify the bounds and resolution of the Cartesian mesh.

6 Conclusion

A plotting application has been developed to support the key features desired by both the
OpenMC development team and members of Oklo Inc.’s design team as agreed upon at the
beginning of the project. This application will be distributed with the main OpenMC codebase
and will require only two additional Python third-party packages, both of which are in wide use
and actively supported. The plotting application is already in use by members of the community
to aid in model preparation, visualization, and validation. Our intent is for the OpenMC
development team to continue supporting this project, adding features to the application
beyond those discussed in the roadmap section above.

Acknowledgments

This material was based upon work supported by the U.S. Department of Energy, Office of
Nuclear Energy through a Gateway for Accelerated Innovation in Nuclear (GAIN) voucher under
Contract DE-AC02-06CH11357.

10



Computational Science Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Lemont, IL 60439

www.anl.gov


